3,892 research outputs found

    Ab initio Stellar Astrophysics: Reliable Modeling of Cool White Dwarf Atmospheres

    Full text link
    Over the last decade {\it ab initio} modeling of material properties has become widespread in diverse fields of research. It has proved to be a powerful tool for predicting various properties of matter under extreme conditions. We apply modern computational chemistry and materials science methods, including density functional theory (DFT), to solve lingering problems in the modeling of the dense atmospheres of cool white dwarfs (Teff<7000 KT_{\rm eff}\rm <7000 \, K). Our work on the revision and improvements of the absorption mechanisms in the hydrogen and helium dominated atmospheres resulted in a new set of atmosphere models. By inclusion of the Ly-α\rm \alpha red wing opacity we successfully fitted the entire spectral energy distributions of known cool DA stars. In the subsequent work we fitted the majority of the coolest stars with hydrogen-rich models. This finding challenges our understanding of the spectral evolution of cool white dwarfs. We discuss a few examples, including the cool companion to the pulsar PSR J0437-4715. The two problems important for the understanding of cool white dwarfs are the behavior of negative hydrogen ion and molecular carbon in a fluid-like, helium dominated medium. Using {\it ab initio} methods we investigate the stability and opacity of these two species in dense helium. Our investigation of C2\rm C_2 indicates that the absorption features observed in the ``peculiar'' DQp white dwarfs resemble the absorption of perturbed C2\rm C_2 in dense helium.Comment: 6 pages, 4 figures, submitted to proceedings of 17th European White Dwarf Workshop, Tuebingen, Germany 201

    Exercise training and detraining process affects plasma adiponectin level in healthy and spontaneously hypertensive rats

    Get PDF
    BACKGROUND: Adiponectin levels with long-term swimming exercise have been never investigated in spontaneously hypertensive rats (SHR). OBJECTIVE: This study was aimed to investigate the effects of exercise and detraining process on the adiponectin plasma levels of spontaneously hypertensive rats (SHR) and healthy Wistar-Kyoto rats (WKY). MATERIAL AND METHODS: The rats in the exercise groups were swimming for 10 weeks, 5 days/week, one hour in a day. The detraining rats were left to be sedentary in their cages for 5 weeks after 10 weeks of exercise period. RESULTS: The plasma adiponectin levels decreased in E and SHRE groups compared to the SC and the SHR groups, respectively. In addition, blood pressure was decreased in the exercise groups vs their controls. The adiponectin level was not found to be significantly different in ED and SHRED groups compared to their controls. The blood pressure did not differ between SDC and ED groups, although in the SHRED group it was found to be lower than in SHRSD group rats. CONCLUSION: The results of this study showed that exercise reduced plasma levels of adiponectin in healthy and spontaneously hypertensive rats. However, this difference disappeared at the end of the training processes. Our results suggest, that changes in plasma adiponectin levels are not responsible for changes in blood pressure

    The LHC Phenomenology of Vectorlike Confinement

    Full text link
    We investigate in detail the LHC phenomenology of "vectorlike confinement", where the Standard Model is augmented by a new confining gauge interaction and new light fermions that carry vectorlike charges under both the Standard Model and the new gauge group. If the new interaction confines at the TeV scale, this framework gives rise to a wide range of exotic collider signatures such as the production of a vector resonance that decays to a pair of collider-stable charged massive particles (a "di-CHAMP" resonance), to a pair of collider-stable massive colored particles (a "di-R-hadron resonance), to multiple photons, WWs and ZZs via two intermediate scalars, and/or to multi-jet final states. To study these signals at the LHC, we set up two benchmark models: one for the di-CHAMP and multi-photon signals, and the other for the di-R-hadron and multijet signals. For the di-CHAMP/multi-photon model, Standard Model backgrounds are negligible, and we show that a full reconstruction of the spectrum is possible, providing powerful evidence for vectorlike confinement. For the di-R-hadron/multijet model, we point out that in addition to the di-R-hadron signal, the rate of the production of four R-hadrons can also be sizable at the LHC. This, together with the multi-jet signals studied in earlier work, makes it possible to single out vectorlike confinement as the underlying dynamics.Comment: 32 pages, 28 figures. Several typos fixed, one paragraph added elaborating choice of benchmarks. Version accepted by JHEP

    The Binary Fraction of Low Mass White Dwarfs

    Full text link
    We describe spectroscopic observations of 21 low-mass (<0.45 M_sun) white dwarfs (WDs) from the Palomar-Green Survey obtained over four years. We use both radial velocities and infrared photometry to identify binary systems, and find that the fraction of single, low-mass WDs is <30%. We discuss the potential formation channels for these single stars including binary mergers of lower-mass objects. However, binary mergers are not likely to explain the observed number of single low-mass WDs. Thus additional formation channels, such as enhanced mass loss due to winds or interactions with substellar companions, are likely.Comment: 9 pages, accepted to Ap

    Two New Tidally Distorted White Dwarfs

    Full text link
    We identify two new tidally distorted white dwarfs (WDs), SDSS J174140.49+652638.7 and J211921.96-001825.8 (hereafter J1741 and J2119). Both stars are extremely low mass (ELM, < 0.2 Msun) WDs in short-period, detached binary systems. High-speed photometric observations obtained at the McDonald Observatory reveal ellipsoidal variations and Doppler beaming in both systems; J1741, with a minimum companion mass of 1.1 Msun, has one of the strongest Doppler beaming signals ever observed in a binary system (0.59 \pm 0.06% amplitude). We use the observed ellipsoidal variations to constrain the radius of each WD. For J1741, the star's radius must exceed 0.074 Rsun. For J2119, the radius exceeds 0.10 Rsun. These indirect radius measurements are comparable to the radius measurements for the bloated WD companions to A-stars found by the Kepler spacecraft, and they constitute some of the largest radii inferred for any WD. Surprisingly, J1741 also appears to show a 0.23 \pm 0.06% reflection effect, and we discuss possible sources for this excess heating. Both J1741 and J2119 are strong gravitational wave sources, and the time-of-minimum of the ellipsoidal variations can be used to detect the orbital period decay. This may be possible on a timescale of a decade or less.Comment: 6 pages, 4 figures, accepted for publication in the Astrophysical Journa

    The Discovery of the Most Metal-Rich White Dwarf: Composition of a Tidally Disrupted Extrasolar Dwarf Planet

    Full text link
    Cool white dwarf stars are usually found to have an outer atmosphere that is practically pure in hydrogen or helium. However, a small fraction have traces of heavy elements that must originate from the accretion of extrinsic material, most probably circumstellar matter. Upon examining thousands of Sloan Digital Sky Survey spectra, we discovered that the helium-atmosphere white dwarf SDSS J073842.56+183509.6 shows the most severe metal pollution ever seen in the outermost layers of such stars. We present here a quantitative analysis of this exciting star by combining high S/N follow-up spectroscopic and photometric observations with model atmospheres and evolutionary models. We determine the global structural properties of our target star, as well as the abundances of the most significant pollutants in its atmosphere, i.e., H, O, Na, Mg, Si, Ca, and Fe. The relative abundances of these elements imply that the source of the accreted material has a composition similar to that of Bulk Earth. We also report the signature of a circumstellar disk revealed through a large infrared excess in JHK photometry. Combined with our inferred estimate of the mass of the accreted material, this strongly suggests that we are witnessing the remains of a tidally disrupted extrasolar body that was as large as Ceres.Comment: 7 pages in emulateapj, 5 figures, accepted for publication in Ap
    • …
    corecore